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Abstract— Long-horizon contact-rich manipulation has long
been a challenging problem, as it requires reasoning over
both discrete contact modes and continuous object motion.
We introduce Implicit Contact Diffuser (ICD), a diffusion-based
model that generates a sequence of neural descriptors that
specify a series of contact relationships between the object and
the environment. This sequence is then used as guidance for an
MPC method to accomplish a given task. The key advantage of
this approach is that the latent descriptors provide more task-
relevant guidance to MPC, helping to avoid local minima for
contact-rich manipulation tasks. Our experiments demonstrate
that ICD outperforms baselines on complex, long-horizon,
contact-rich manipulation tasks, such as cable routing and
notebook folding. Additionally, our experiments also indicate
that ICD can generalize a target contact relationship to a
different environment. More visualizations can be found on our
website https://implicit-contact-diffuser.github.io

I. INTRODUCTION

Interacting with the environment through contact is central
to many robotic tasks, such as manipulation and locomotion.
Despite the ubiquity of contact interactions, controlling these
hybrid systems poses significant challenges due to the com-
plex interplay between discrete contact events and continuous
motion. For instance, in cable routing, the robot must gener-
ate smooth motions to initiate and maintain contact between
the cable and the fixtures (Fig. 1). If the contact breaks at
any point, the cable could slip off the fixtures. Moreover,
when model errors or external disturbances occur, the robot
must adjust its actions accordingly to maintain task success.

A large body of work has attempted to tackle these chal-
lenges by planning [1], [2], [3], [4] or trajectory optimiza-
tion [5], [6], [7] through contact. However, these methods are
typically limited to rigid objects, or face limitations in online
replanning due to the high computational costs involved.

In this paper, we introduce a learning-based model pre-
dictive control (MPC) framework to address this class of
problems. In particular, we train a latent diffusion model
to generate future contact sequences as subgoals, which
guide a MPC controller to generate robot motions that
establish the desired contact relationships. A key question,
however, is determining the best representation for these
contact relationships.

One approach is to use binary contact states. Wi et al. [8]
propose to specify desired contact locations by predicting
a heatmap over the environment. However, this approach
lacks critical information regarding which part of the object
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Fig. 1: By predicting future contact sequences using a latent diffusion model,
we enable long-horizon contact-rich deformable object manipulation such
as cable routing using a sampling-based MPC controller.

should be in contact, a crucial factor for tasks where main-
taining precise object-environment interactions is important.
Additionally, it cannot capture the dynamic contact switching
required in certain tasks.

To overcome these limitations, we leverage recent ad-
vancements in implicit neural representations and encode
contact relationships using a modified version of Neural
Descriptor Fields (NDF) [9]. We train a scene-level NDF
to capture geometric information by predicting occupancy
and gradient direction of the signed distance function. By
querying the scene NDF with the object’s point cloud, we
compute a dense, contact-aware representation of the object.
Our experiments show that these neural descriptors capture
task-relevant geometric relationships (e.g., left or right of a
fixture) rather than specific locations, providing more flexible
guidance. This allows us to transfer goal contact relationships
across different environments at test time.

To capture the contact switching required to reach a goal,
we train a latent diffusion model to predict the contact
sequence represented by neural descriptors. We also learn
a reachability function, similar to Subgoal Diffuser [10],
to determine the required sequence length. The key con-
tributions of this paper are: 1) a latent diffusion model
that reasons about evolving contact relationships in long-
horizon manipulation tasks; 2) an MPC framework that plans
motions based on desired contact relationships rather than
precise locations. 3) a scene-level neural descriptor field
that provides local contact representations, enabling greater
generalization across environments.

We validate our method on challenging long-horizon
contact-rich manipulation tasks, including cable routing and
notebook folding. Our results show that ICD outperforms or
is on par with baselines that plan to exact locations rather
than focusing on contact relationships, as well as baselines
that directly predict actions without planning. ICD can also
adapt a target contact relationship to a different environment
naturally.

https://implicit-contact-diffuser.github.io/


II. RELATED WORK

A. 3D Representation for Object Manipulation

Prior works studies different representations for object
manipulations, such as key points [11], RGB image [12],
[13], point cloud [14], [15] or mesh [16], [17], [18]. Recently,
Neural Descriptor Fields (NDF) [9], [19], [20] demonstrates
itself as an effective implicit representation for category-level
generalization. In this work, we propose a variant of NDF
where spatial structure is preserved. We show that compared
to explicit representations such as point cloud, the NDF
better captures the soft contact relationships between object
and environment.

B. Contact Reasoning for Robot Manipulation

Controlling the robot to make and break contacts purpose-
fully has been one of the key challenges for robotics, since it
involves optimizing over a hybrid system that contains both
continuous (robot motion) and discrete variables (contact).
One common approach [1], [2], [3], [4] is to find object
motions using a sampling-based motion planner guided by a
high-level search for contact modes. However, these methods
are typically limited to rigid objects. Recently, learning-
based methods have been introduced to detect or control
contact [21], [22], [23], [24], [25] for complaint tools such
as spatulas. Wi et al. [8] designs a framework for contact-
rich manipulation that predicts the target contact patch over
the environment conditioned on the language. However, the
predicted contact patch does not specify which part of the
object should make contact, and does not model a sequence
of changing contacts. In this paper, we propose to use a
contact-aware neural representation and a diffusion-based
architecture to model future contact sequences for highly
deformable objects, such as cables.

C. Diffusion Models for Robotics

Diffusion models have also been applied to robot manip-
ulation, either as a policy class that predicts action directly
from observation [13], [26], [27], [28], [29], [30], [31], or
as a learned planner to generate future trajectories [32],
[33], [34], [35], [10]. Although some existing diffusion-based
methods have been shown to work on certain contact-rich
manipulation tasks, such as planar pushing [13], dumpling
making [15] or book shelving [36], our experiment suggests
that they struggle with tasks that involve long-horizon rea-
soning of changing contacts. Similarly to us, the Subgoal
Diffuser [10] generates future subgoals using a diffusion
model to guide an MPC controller. However, Subgoal Dif-
fuser represents the subgoals using locations of key points,
which can be overly constrained and does not reason about
the contact interaction between object and environments
explicitly.

D. Long-horizon reasoning for robot manipulation

Long-horizon manipulation tasks usually contain several
distinct stages and contain a lot of local optima. One way
to tackle this is to plan over skill abstractions [37], [38],
[39], [40], [41], [42], [43] learned with imitation learning or

reinforcement learning. Another way is to decompose tasks
into multiple subgoals [44], [45], [46], [47], [10], [35], which
can be used to guide a low-level policy. We propose a method
to generate subgoals represented by neural descriptors, which
will highlight the contact relationships bwtween the objects
and environment. While NOD-TAMP [48] uses a similar
representation for long-horizon reasoning, it adapts a given
demonstration trajectory to a new situation by optimization
while we directly learn the distribution of the trajectory using
a latent diffusion model. Also, NOD-TAMP cannot handle
deformable objects.

III. PRELIMINARIES

A. Problem Statement

In this paper, we consider long-horizon contact-rich ma-
nipulation problems of deformable object that involve chang-
ing contacts. We denote the robot state by st and the action
by at. The goal specification is represented as a pair of
point clouds (Pog ,Ps), where Pog is the point cloud of the
object in a goal state and Ps is the point cloud of the scene.
However, the goal is not to match the shape and pose of the
object exactly but to match the contact relationship between
the object and the scene, so that the object is in contact with
the scene in the correct locations. For example, in a cable
routing task, the objective is to route the cable through the
opening of the hook, ensuring that the cable touches the front
side of the hook but not the back. It is important to note
that we focus solely on the geometric aspect of the contact,
without differentiating between the contact modes such as
sticking or sliding contact.

This type of problem presents significant challenges due to
the need for joint reasoning over both continuous motion and
discrete contact switching, particularly for high-dimensional
deformable objects. Additionally, long-horizon reasoning is
crucial for generating effective contact-switching behavior
while avoiding local minima, ensuring that the robot can
progress toward the final goal without becoming stuck in
suboptimal configurations.

Our objective is to learn a dense object-centric representa-
tion of contact relationship, which describes how each point
of the object interacts with the environment. Next, we learn
a generative model that, given the current state, scene, and
goal specification, predicts a sequence of contact subgoals
using the learned representation. These subgoals guide an
MPC method to sequentially make and break contact and
ultimately reach a goal state that conforms to the goal
specification.

We assume access to an offline dataset D, which con-
tains N different trajectories of object point clouds and
the corresponding scene point cloud (τ i,P i

s), where τ i =
[P i

o0 , P
i
o1 , · · · , P

i
oL ]. The offline dataset is collected with a

scripted policy that does not guarantee task completion. We
also assume access to the full point cloud for both the object
and the scene, and the order of points in Po does not change
between states.
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Fig. 2: System overview, with the notebook folding task as an example. First, ICD transforms the scene, current object, and goal object point cloud, into
an implicit contact representation using a modified NDF model. The NDF model can be used to extract point-wise contact relationships of the object,
shown by the color. Next, we project the dense NDF point clouds into low-dimensional latent vectors and utilize a latent diffusion model to generate a
sequence of contact subgoals. The latent diffusion model generates subgoals recursively from coarse to fine, depending on a reachability measure. Finally,
we track these predicted subgoals using a sampling-based MPC method, ensuring that the object reaches the desired contact specification.

B. Diffusion Models

Implicit Contact Diffuser is largely based on diffusion
models [49], [50], which are a powerful class of generative
models that frame data generation as a K-step iterative
denoising procedure. To sample a noise-free output τ∗0
from a diffusion model, it starts by sampling τK from a
Gaussian noise distribution. Then we perform K iterations
of stochastic Langevin Dynamics [51] with the update rule
τ k−1 = αk(τ k − γkϵθ(τ

k, k) + N(0, σ2I)). αk and γk

are both hyperparameters related to the noise schedule and
N(0, σ2I)) denotes Gaussian noise added at each iteration.
ϵθ is parameterized by a neural network to estimate the noise
that can be used to recover the original data. DDPMs [50]
propose to train diffusion model using the variational lower-
bound on log pθ(τ ): LDDPM (θ) = ||ϵk − ϵθ(τ

k, k)||2.

IV. METHOD

In this section, we introduce Implicit Contact Diffuser,
a method designed to capture and reason about contact
switching in long-horizon deformable object manipulation.
In Section IV-A, we discuss how to represent the object-
environment contact relationships of deformable objects us-
ing an implicit neural representation. In Section IV-B, we
describe how to train a latent point cloud diffusion model
to predict the contact sequence. Finally, in Section IV-C, we
discuss how to follow the predicted contact sequence using
a sampling-based MPC planner.

A. Contact-aware Neural Descriptor Field

Finding a suitable contact representation that facilitates
planning is a challenging problem. If we naively represent
contact with a binary discrete representation, planning over
the contact space can quickly become combinatorially expen-
sive, which is one of the reasons why prior methods [52], [4]
struggle with deformable objects. Our key insight is that we
can capture the soft object-environment contact relationships
using a continuous implicit neural representation. We build
upon Neural Descriptor Fields (NDF) [9], [19], [20] to
develop a contact-aware neural representation for deformable
objects, utilizing a scene NDF. Given a scene point cloud Ps,

we learn a function f to map a 3D coordinate x ∈ R3 to a
latent neural descriptor in Rd:

f(x|Ps) = f(x|Es(Ps)) (1)

where Es(Ps) is a PointNet [53] model. Given an object
point cloud Po, the state of the object can be described as
the concatenation of all point descriptors:

Pndf = ϕNDF (Po|Ps) =
⊕

xi∈Po

f(xi|Ps) (2)

Since the function f is trained to predict the geometric
features of the scene, the NDF point cloud Pndf ∈ RN×d

can be interpreted as an encoding of point-wise geometric
relations with the scene for every point on the object.

We make several key design choices to adapt NDF, en-
suring it better suits the tasks we are dealing with. Similar
to Simeonov et al. [9], we train f(x|Ps) using occupancy
prediction. Additionally, we incorporate an auxiliary loss on
the gradient direction of the signed distance function (SDF):
Jgrad = (∇SDF (x)−∇̂SDF (x))2, where ∇SDF (x) and
∇̂SDF (x)) refer to ground-truth and predicted gradients of
the SDF. This helps the descriptors encode not only whether
a point is in contact (occupied), but also how to make contact
for points that are not yet in contact.

NDF adopts a SE(3)-invariant neural network architec-
ture, Vector Neuron [54], to enhance the generalizability
of the descriptors. While the descriptors remain unchanged
when a transformation T ∈ SE(3) is applied to the object
and the scene simultaneously, this can sometimes lead to
unrealistic outcomes. For example, the object will have
similar NDF features whether it contacts the floor or the
ceiling. To mitigate this, we modify the Vector Neuron to
be invariant only to the rotations along the direction of
gravity (as gravity plays a large part in determining the
configuration of a deformable object) , which we define as
SE(3)z . Specifically, we add a small constant value to the z-
axis of the point features, ensuring that rotations not aligned
with the z-axis produce distinct latent features.

The original NDF model [9] encodes the entire point
cloud into a single global feature vector by averaging over
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Fig. 3: shown in the the upper figure, the NDF model is trained to encode local geometries of the scene by predicting occupancy and gradient direction of
the Signed Distance Function (SDF) of the scene. Given an object point cloud Po, such as that of a notebook, we transform it into a contact-aware latent
representation Pndf . In the bottom figure, we show how the reachability-aware point cloud VAE is trained. In additional to the regular reconstruction
and KL divergence loss, we introduce a distributional reachability prediction loss to encourage temporal consistency in the latent space. The reachability
predictor is also used in the latent diffusion model to decide the number of subgoals required for the tasks, as shown in Fig. 2.

Es(Ps). In contrast, we aggregate the local features of nearby
contact candidates for each query point using K-nearest
neighbors (Fig. 2) based on the intuition that the object
is more likely to make contact with spatially closer points.
Our experiments indicate that incorporating these local NDF
features is important for improving task performance.

B. Implicit Contact Diffuser

In the previous section, we describe a dense contact-
aware neural representation for deformable objects. Now we
will use this representation to tackle long-horizon contact-
rich manipulation problems with contact switching. We in-
troduce Implicit Contact Diffuser, a diffusion-based ar-
chitecture that generates a sequence of subgoals τndf =
[Pndf0 ,Pndf1 ,Pndf2 , . . . ,PndfM ], represented as NDF point
clouds Pndf ∈ RN×d.

While diffusion models have been applied to point cloud
generation, prior works [55], [56] only generate individual
point clouds P ∈ RN×3. In our case, in order to capture
contact switching, we need to generate a sequence of coher-
ent latent point clouds consisting of high-dimensional point
features.

To tackle this sequential point cloud generation problem,
we propose using Latent Diffusion Models (LDM) [57].
We begin by training a Variational Autoencoder (VAE) [58]
to project the high-dimensional point cloud Pndf into low-
dimensional vectors. Next, we train a hierarchical diffusion
model to recursively generate subgoals from coarse to fine,
following Huang et al. [10].
Reachability-aware Point Cloud VAE. The VAE comprises
three components: a PointNet++ encoder Endf (zt|Pndft)
[59], a point-wise MLP decoder Dndf (P̂ndft |P canon

o , zt),
and a distributional reachability prediction MLP
φ(r̂|zt1 , zt2 , Es(Ps)), as visualized in Fig. 3. The encoder
Endf compresses the NDF point cloud Pndft into a latent
vector zt. The pointwise MLP decoder Dndf is adapted

from Luo et al. [55]. Given zt and the canonical object point
cloud P c

o , an implicit decoder Dndf reconstructs the NDF
point cloud from the latent vector. The query coordinates
P canon

o are predefined, i.e., a straight rope or a magazine
that is laid flat.

The VAE is trained by three different losses:

Lvae = λ1Lrecon(Pndf,P̂ndf ) (3)
+ λ2DKL(Endf (zt|Pndft),N(z)) (4)
+ λ3LReach(r, φ(r|zt1 , zt2 , Es(Ps))) (5)

In addition to the regular reconstruction loss and KL
regularization loss, we introduce a reachability loss Lreach to
encourage temporal consistency in the learned latent space.

During training, we sample pairs of states in the same tra-
jectory using the discounted state occupancy measure (lower
probability for states that take more steps to reach) in line
with previous work [60], [61]. For a pair of NDF point clouds
(Pndft1

,Pndft2
), we define reachability as the minimum

number of steps to travel between them. Following Subgoal
Diffuser [10], we discretize the reachability into K bins and
frame the reachability prediction problem as a classification
problem and train an MLP φ(r|zt1 , zt2 , Es(Ps)) with cross-
entropy loss. Since we do not assume that the training
data are high-quality demonstrations, and there might exist
multiple paths of different lengths to travel between two
states, φ(r|zt1 , zt2 , Es(Ps) will capture the distribution of
reachability between two states. During test time, we use
“softmin” to estimate shortest distance (highest reachability),
which is used to determine the number of subgoals for the
latent diffusion model.
Latent Point Cloud Diffusion Model The objective of
the latent diffusion model is to generate a sqeuence of NDF
subgoals τndf , given current state, goal specification, and the
scene. With the point cloud VAE described above, the diffu-
sion model only needs to model the distribution of the con-
densed latent vectors, denoted as p(τz|zcur, zgoal, Es(Ps)).
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Fig. 4: We evaluate our methods on two long-horizon contact-rich tasks in
simulation: cable routing and notebook folding. Goals are visualized in red.

Following Subgoal Diffuser [10], we generate subgoal se-
quences recursively in a coarse to fine manner. Starting from
τ 0
z = [zcur, zgoal], in each iteration, the number of subgoals

in τ l+1
z increases by |τ l+1

z | = |τ l
z| × 2 − 1. Instead of

generating from scratch, the latent diffusion model predicts
the next level of subgoals τ l+1

z conditioned on the previous
ones τ l

z . Hence, the latent diffusion model can be written as
p(τ l+1

z |τ l
z, Es(Ps)).

C. MPPI with Neural Contact Subgoals

Every T steps, Neural Contact Diffuser generates a se-
quence of contact subgoals τ̂ndf . We use a sampling-based
MPC method, Model Predictive Path Integral (MPPI) [62],
to plan a sequence of robot actions to track the subgoals. We
define robot actions a ∈ R3 as the delta translation of the end
effector. At each step, MPPI samples K action sequences of
length H , where H is the planning horizon.

The sampled actions are evaluated by rolling out in the
MuJoCo [63] simulator with the following cost:

JMPPI =

H−1∑
t=0

(
min

P̂ndfi
∈τ̂ndf

(Pndft − P̂ndfi)
2

+ λcol max(−SDF (rt), 0)

)
τ̂ndf is the desired NDF subgoals predicted by the diffusion
model. The rollouts from the simulator are transformed to
NDF space using ϕndf , which we denote as Pndft . The
first cost term is the Euclidean distance to the closest NDF
subgoal. A subgoal will be removed from the goal chain
τ̂ndf once the current state is within predefined distance
threshold. The second cost is to prevent the robot from
colliding with the environment, represented as the scene SDF.
The robot geometry is approximated by a set of spheres as in
[64]. By minimizing JMPPI , MPPI generates robot actions
that manipulate the object to achieve the desired contact
relationships described by τ̂ndf .

V. EXPERIMENTS

Our experiments aim to show that 1) the scene NDF is a
good representation for capturing contact relationships and 2)
Implicit Contact Diffuser is capable of long-horizon contact
reasoning and generating contact sequences to guide an MPC
controller to reach the desired contact relationship. We also
demonstrate our method on a physical robot and the videos
can be found on our website.

Method Cable Routing Notebook
Success ↑ Complete ↑ Success ↑

Implicit Contact Diffuser 90 95 95
Subgoal Diffuser [10] 65 80 100
Diffusion Policy [13] 30 40 70

3D Diffusion Policy [15] 15 40 5
PC-MPPI 25 55 50

NDF-MPPI 55 70 10

Global NDF 50 75 75

TABLE I: We evaluate every method on 10 test cases for 2 seeds (20 runs
in total) and report the success rate. For the cable routing task, success
is defined as the cable being routed through both fixtures. Additionally,
we report the ”complete rate,” which represents the percentage of fixtures
successfully routed by the cable.

A. Simulation Experiments

1) Tasks: We evaluate our method on two long-horizon
manipulation tasks that involve changing contact (Fig. 4).
Cable routing. The goal is to route the rope through two
randomly placed fixtures on a table. One end of the cable
is fixed and the other is grasped by a floating gripper. The
task is considered successful if the rope is routed through
both fixtures. We also consider the “complete rate”—the
percentage of successfully routed individual fixtures. This
task is challenging due to: 1) The high-dimensional state
space and complex rope dynamics; 2) The need for precise
control of a deformable object (ensuring the cable stays
inside the first fixture when routing the second); and 3) Long-
horizon reasoning (to avoid local minima).
Notebook folding. The goal is to move notebook from the
ground to the table, lay it on the table, and fold it. Each stage
can be characterized by distinct contact mode. The positions
and sizes of the tables and obstacles are randomized. The
floating gripper grasps the notebook in the middle of its edge.
The task is considered success if the pairwise distance to the
goal object point cloud is below a threshold.

For both tasks, the goal specification is provided as point
cloud. We evaluated each method on 10 test cases for 2 seeds.
The environments are built in the MuJoCo [63] simulator.

B. Implementation Details

We collected 5,000 trajectories of length 200 for cable
routing and 10,000 trajectories of length 100 for notebook
using scripted policies. The scene point clouds contains 1000
points and the object point clouds contain around 200 points.
The NDF model is trained using equal weights for occupancy
prediction and SDF gradient prediction. For VAE, the loss
weights for reconstruction, KL-divergence and reachability
are 1, 1e−6 and 1e−5. For the diffusion model, we follow
the training scheme of DDPMs [50] with 100 diffusion steps.
MPPI samples 80 trajectories with a horizon of 10. We use
a noise scale of 0.001 for action sampling and a temperature
of 0.005 for cost computation.

1) Baselines: 1) MPPI: We evaluate MPPI without the
subgoals for guidance. We explore two different object
representations for cost computation, referred to as PC-MPPI
and NDF-MPPI; In PC-MPPI, the cost is computed as the
distance in point cloud space, while NDF-MPPI computes
cost in NDF space. 2) Subgoal Diffuser [10]: A modified

https://implicit-contact-diffuser.github.io/


Fig. 5: Physical demonstration with a 7-DoF Kuka arm on cable routing with 3 different cables for a total of 10 runs. Videos are available on our website.

version of Subgoal Diffuser that predicts a sequence of object
point clouds using the same latent diffusion model as our
method. The predicted subgoals are also tracked by the same
MPPI planner. 3) Diffusion Policy [13]: We adapt the official
implementation to make the policy goal-conditioned. This
version uses a keypoints-based object representation, while
the scene information is encoded using the PointNet encoder
from the NDF model. 4) 3D Diffusion Policy [15]: This
baseline takes as input the point clouds of the object and
the scene, and directly predicts the actions for the robot to
execute. 5) Global NDF. Instead of retrieving local features
using KNN, this baseline follows the original NDF [9] to
compute a global feature vector for the entire scene.

2) Results: The quantitative results can be found in Ta-
ble I, and here we discuss our main findings.
Subgoal generation is critical for long-horizon reasoning.
We observe that the subgoal-based methods outperform
both model-free methods that do not have explicit global
reasoning (diffusion policy and 3D diffusion policy) and
MPC methods that plan directly to the goal (PC-MPPI and
NDF-MPPI). This result shows the importance of reasoning
over the intermediate contact sequences explicitly.
Contact-aware state representation is critical for long-
horizon contact reasoning. We observe that while subgoal
diffuser performs well on notebook folding, its success rate
drops significantly on cable routing. Upon inspection, we
found that the primary failure mode is that the point cloud-
based subgoal tends to lead the MPC to local minima since
it does not capture the contact relationship. For instance,
it may lead to a state where the cable is spatially close
to the goal configuration but is positioned incorrectly, such
as being on the wrong side of the fixtures. In contrast, our
method leverages NDF to capture the geometric relationships
between the rope and the fixtures. The NDF-based subgoals
provide better guidance for the MPC to reach desired contact
relationships. We also observe that the modified locally-
conditioned NDF better captures the contact relationships
compared to the global NDF.

Original Perturbed

Fig. 6: Examples for adaptation test.

3) Adaptation test: Our previous experiment assumes
the goal specification is provided for each task. However,
obtaining the exact goal specification can be challenging in
practice. It would be beneficial if we could reuse a previous
goal specification (Pog , Ps) in a different environment P ′

s.
To explore this, we conduct an additional experiment, called

Method Success rate ↑ Complete Rate ↑

Ours 90 90
Subgoal Diffuser [10] 25 47.5

TABLE II: Results of adaptation test on cable routing

the adaptation test. In this experiment, we randomly perturb
the positions and orientations of the fixtures. As shown in
Fig. 6, planning to the original goal using a point cloud-based
representation is likely to fail, due to the change of fixture
locations. Our key insight is that, even when the scene is
altered, the desired contact relationships between the object
and the scene remain consistent.

As illustrated in Table II, planning in the NDF space
allows our method to successfully route the cable in the per-
turbed scene, whereas the baseline, which relies on precise
positional subgoals, struggles to adapt to the changes in the
environment.

C. Physical Demonstration

1 2 3

Fig. 7: Cables used in the phys-
ical experiments.

We deployed Implicit Contact
Diffuser on a 7 DoF Kuka LBR
iiwa arm for a real-world ver-
sion of the cable-routing task.
We used a Zivid 2 camera and
CDCPD [65] to track the point
cloud of the cable. We tested on
3 different cables, one soft, thin
charging cable, one stiff ether-
net cable, and a thick rope, for a total of 10 trials. While our
method succeeds 9 / 10 runs, challenges such as perception
errors from the tracker and the limited workspace of the robot
affected the overall reliability of the method. Please see our
website for the videos.

VI. CONCLUSION AND FUTURE WORK

We introduce a novel framework that enables the robot to
reason about changing contacts between environments and
objects. Our approach captures object-environment interac-
tions using a smooth, continuous implicit representation. We
then use a latent point cloud diffusion model to generate
future contact subgoals using this representation. When in-
tegrated with an MPC method, the robot can intelligently
initiate and break contacts to manipulate the object to satisfy
a desired contact specification. However, the method has
limitations: 1) It assumes access to full object and envi-
ronment point clouds, which are often unavailable in real-
world scenarios. Shape completion methods [66], [17] could
be applied to address this issue. 2) While replanning helps
address model and perception errors, these errors are not
considered during subgoal generation—a gap that could be
addressed with online learning through interaction.

https://implicit-contact-diffuser.github.io/
https://implicit-contact-diffuser.github.io/
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